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For two parameters, b, and b,, the relation- 
ships given by equation 3.3-27 are illustrated 
in figure 3.3-5, (Note the use of scaled param- 
eters; see equation 3.3-17.) 

If 0=90”, then, as discussed in section 3.3.1, 
no improvement in parameters is likely to result 
from application of the Gauss-Newton pro- 
cedure. However, application of the Marquardt 
parameter, +O, will result in 8<90” (Mar- 
quardt, 1963) because vector 4 is shifted pro- 
gressively toward g as p increases. Thus, a 
viable scheme for choosing p is to define a max- 
imum value of 0, 8,,<90°, and compute p so 
that 8 never exceeds C,,. This can be ac- 
complished rather simply. At the beginning of 
the regression set pe=O. Then at each iteration 
r, check and recompute p as necessary: 

/+=I$ 

if ~+l~O~emkf+l~+l)&~ or 

&+&~~+0.001 
(3.3-28) 

At the beginning of iteration r, P=l and 
Pp=Ppl- Then equation 3.3-20 is solved and 
equation 3.3-28 is applied. If the second part 
of equation 3.3-28 is employed, equation 3.3-20 
is resolved using pp+ r, P is incremented by one, 
and equation 3.3-28 is used again. This process 
is continued until the first part of equation 
3.3-28 is used, at which point the appropriate 
value of ~1 for iteration r has been found. The 
formula for computing pp+ 1 from crp is empirical 
but gives what experience has shown to be a 
good range in values of p. For each resolution 
of equation 3.3-20, S& & and gr are not recom- 
puted. Thus, the calculations are not extensive. 

Computation of p is designed to prevent 
disastrous overshoot and to keep p4 within the 
region R defined by equation 3.3-25. A simple 
but usually effective scheme is to estimate the 
maximum fraction that any of the parameters 
could change and still remain within R and then 
to prevent any parameter from changing any 
more than this amount over any iteration. ILet 
t, be this maximum fractional change. Then 
at iteration r, p is calculated as follows: 

t=max)d~+%J (3.3-,29) 
i 

w22 

Figure 3.3-5 

p=l if t<t- or 

p = t-It if t>tmz 

where c=bfif b:P 0 and c=l if bI=O. 

3.4 Regression Including Prior 
Information a 

3.4.1 Model Structure 

Recall that the standard nonlinear regression 
model including prior information on the param- 
eters may be written in the form (equation 
3.1-32) 

X=&B +s (3.4-l) 

where 

41, 
_Y= 

XIJ 

53 
E= 

4 

(3.4-2) 

(3.4-3) 

(3.4-4) 

4 
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and subscripts s andp indicate sample and prior 
information, respectively. To correspond with 
the above partitions into sample and prior in- 
formation, the sensitivity matrix should be writ- 
ten in the form 

x= n -zP 
(3.4-5) 

where g is a function of @ for a nonlinear model. 
The transformation of X_ to S_ used to control 
round-off error is defined analogously. Finally, 
recall that the weight matrix is partitioned as 

2.2 ;I I (3.4-6) 

where f?s and 3 correspond to sample and prior 
information, respectively. 

Often partition X will be obtained in a dif- 
ferent manner than 4. 2 For example, the model 
for the sample information may be numerical of 
the type in equation 3.3-22, whereas the model 
for the prior information may be of the ana- 
lytical linear or nonlinear form. Thus, X, would 
be obtained as described in section 3.3.2, and 
X would be obtained as described in section 
-5 3. .l. Other types of differences are handled in 
a similar fashion. Obviously, if sample and prior 
models are of the same type, then X, and & 
are obtained in the same manner. 

Despite the possibilities for combinations of 
linear, nonlinear, analytical, and numerical 
models, remember that all models have the 
general form of the incremental linear model 
when expanded in the Taylor series. Because all 
models resolve to the incremental linear form, 
for simplicity subsequent discussions in this 
section are based on this model only. 

3.4.2 Solution Procedures 

Whenever s and s are both known, solution 
for both linear and nonlinear models is unaltered 
from that given in the previous sections. How- 
ever, recall that, because of the block diagonal 
form of equation 3.4-6, S(b) and, hence, the nor- 
mal equations can be written in a special form. 

By applying the standard minimization tech- 
nique to S(Zj as given by equation 3.1-42, which 
can be written in the form 

the normal equations for the incremental linear 
model become 

(3.4-8) 

. 

where ,f&&) and ,$,(&i) are for sample and prior 
information, respectively. Equation 3.4-9 is of 
the same form, and thus applies, as the equa- 
tion for each iteration of solution of a nonlinear 
regression problem. 

Frequently, the weight matrix is constructed 
from variancecovariance matrices for 5 and r, 
that are given in the form 

var(&)=lg (3.4-10) 

Vm(E,)=_v (3.4-11) 

where the usual form V L? for equation 3.4-11 
cannot be used because +v a++,) is not known as 
a function of 2. Thus, with z defined as 

. Iv=(~,)l-l 0 
Cd= 2 
- 2 war&Jr1 

(3.4-12) 
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then equation 3.4-9 becomes 

(3.4-13) 

Hence, 02 apparently would have to be known 
to form the regression solution, whereas C? is 
considered to be an unknown. 

Theil(l963) showed that, for a linear model, 
02 may be estimated for use in equation 3.4-13 
by its ordinary least squares estimate (that is, 
the estimate obtained when prior information 
is not used). Bias produced by this estimate was 
shown by Theil(1963) to be of the order of n;“. 
The procedure to be followed is to first solve the 
ordinary least squares problem by omitting all 
prior information; then find the estimate of C? 
(to be given further on); finally use this estimate 
of b in the normal equations to solve the com- 
plete problem, including prior information. 
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l 4 Numerical Nonlinear 
Regression Solution of 
General Steady-State 

Ground-Water Flow 
Problems 

4.1 Assumed Model and 
Solution Procedure 

A model to solve fairly general steady-state 
ground-water flow problems by using the 
regression procedures presented in section 3 is 
given in this section. A complete description of 
the method is given first. Documentation and 
listing of the computer program are given in the 
appendix, section 4.3.4. 

4.1.1 Problem Specification 

The equation assumed to govern ground- 
water flow for the class of problems to be ana- 
lyzed is derived from equation 1.1-l by letting 

3 
3 h/3 t-+0, which results in 

z (T,, :)+a (T q+R(.H-h)+W 
ay ,yy ay 

+~~6(1-o&4~(Y-b,K?f=o , (4.1-1) 

where the symbols are defined the same as for 
equation 1.1-1. 

Functions TrE (that is, T,, and Tyy), R, and 
W are each formulated within the region being 
modeled as the product of a parameter and a 
given (or known) function. To provide for spatial 
variability of parameters, the region is sub- 
divided into a number of discrete zones within 
each of which the parameters are assumed 

constant. Hence, known spatial variability 
(often, but not necessarily, smooth or contin- 
uous) is superimposed upon the discontinuous 
spatial variability dictated by the parameter 
zonation. As an example, hydraulic conductiv- 
ity K[ E may often be considered to be constant 
within particular rock types, each of which may 
be considered to be a discrete zone. Thus K[[ 
may be considered to be a parameter. Thickness 
b may be known from measurements and may 
vary continuously. The function Ttt is, of 
course, given as Kgtb. Finally, because the con- 
trols that dictate a particular zonation may 
vary from parameter to parameter, zones for 
one type of parameter (for example, the 
parameter contained in Tt [) do not necessarily 
correspond to zones for another type (for exam- 
ple, the parameter contained in N’). An exam- 
ple of zonation is given iu figure 4.1-1 where the 
given function is unity so that the parameters 
are TEE and W. 

Internal boundary conditions applying at 
discontinuities in T 
charge normal to t h 

E are that the specific dis- 
e boundary and the hy 

draulic head both remain unchanged as the 
boundary is crossed. External boundary condi- 
tions applying on the periphery of the region be 
ing modeled include specified specific discharge 
normal to the boundary, specified hydraulic 
head at the boundary, or a mixture of the two 
types along the boundary. 

Specific discharge qB normal to the boundary 
is assumed to vary along the boundary in a 
manner similar to that of Tt 5. It may have dis- 
continuities and may vary smoothly between 
discontinuities. Discontinuities in qB might 
often be expected to correspond to discontinui- 
ties in Tt . 

Hydrau ‘c head variation along a specified fi 
head boundary is a continuous function, hB, 
although the boundary may be subdivided into 
segments within each of which head hB may 
vary linearly or curvilinearly with distance. 

Dashed lines separate 
Wzones, and solid 
lines separate Tzones 

Figure 4.1- 1 
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Subdivision into segments is often based on the 
causes of the known head conditions along 
various segments of the boundary. 

Unknown quantities to be determined are 
Ttt, R, w, qB, and hB. Single VShleS Of T,, Or 

T 
Ity; 

R, and W (or multipliers such as K,, or 
are assumed to be parameters in each 

zo%i, although any of these parameters may be 
held constant (assumed known as exact prior 
information) in each zone. Separate zones (or 
segments) are specified for the values of qB, and 
single multipliers for the fluxes in each flux zone 
are assumed to be parameters. Within each of 
the separate segments (zones) of a specified 
head boundary the heads are adjusted as a 
linear function of distance by the regression 
procedure so that the parameters are the values 
of head at each end of each segment. Even 
though the adjustment is linear, the actual 
shape of the head profile along the boundary 
may be curvilinear. 

4.1.2 Matrix Form of Regression 
Model 

For most field problems, equation 4.1-1 with 
its attendant boundary conditions cannot be 
solved analytically. Thus, the regression solu- 
tion must be based on a numerical solution of 
equation 4.1-1, which is expressed as a matrix 
equation. The particular numerical solution 
method is given in the appendix, section 4.3.1. 

The matrix equation comprising the 
numerical solution is given as 

where 

D&=q (4.1-2) 

D_=the square coefficient matrix of order m, 
the number of nodes used to discretize the 
modeled region; 

&= the hydraulic head vector of order m; and 
q=the known vector of order m. 

Matrix 0, contains parameters for Ttt and R, 
whereas vector p can contain ah parameter 
types. To express any specified head value, say 
hj'hBj, 

Djj=l Dji=Dij=O, i#j (4.1-3) 

Qj=hBj (4.1-4) 

where Djj, Dij, and Dji are components of O,, 
and qj is a component of 4. To accomplish the 
condition that Dij=O in equation i, i#j, the term 
DijhB~ is transferred to the right-hand side of 
equation i SO that qi contains the term -DijhBj 
Then Dij in 0, is set to zero. 

The known head value is computed from 

hBj’ 
h$j[LjH,+(l-Lj)H,l 

Lj~+(l-Li)~ 
(4.1-5) 

where 

s=node at one end of the boundary segment 
within which node j lies; 

t=node at the other end; 
H,=head (parameter) at node s; 
H,=head (parameter) at node t; 
LiEratio of distance along the boundary from 

node s to node j, to distance along the 
boundary from node s to node t; and 

superscript O= an initial or reference value. 

Indices s and t can be equal so that j=s=t for 
the case where only one specified head is pres- 
ent. Also, H, and Ht can represent the same 
parameter, so that the entire specified head 
boundary behaves as a unit. 

Because equation 4.1-2 is a linear matrix 
equation, the modified Gauss-Newton pro- 
cedure is employed to solve the regression prob- 
Iem. Equation 4.1-2 is the same as equation 
3.3-21, except that in equation 4.1-2 the coef- 
ficient matrix 0, and right-side vector p are not 
functions of dependent variable vector fi. Hence, 
sensitivities may be calculated using equation 
3.3-24. 

Prior information is assumed to be given (if 
available) on each parameter individually so 
that 

(4.1-6) 

where & is the identity matrix of order np. 
Thus, in equation 4.1-6, direct prior information 
is assumed to be given on the first n. param- 
eters. Placement of these parameters first in the 
vector @ simplifies theoretical statement of 
equation 4.1-6 but is not necessary in practice. 
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The linearized regression model assumed, 
then, is of the form of equation 3.3-7 partitioned 
as suggested by equations 3.4-2 through 3.4-5: 

where s is the vector of heads at observation 
points, ,fJf,&) is the vector of computed heads 
at observation points for iteration r, 5 is the 
vector of prior estimates of the first nP param- 
eters, f,(.&) is the vector of the first nP 
elements of the computed parameter vector (on 
which there is prior information) for iteration 
r, and, from equation 4.1-6, Xr=& ,OJ. 

No correlation or other coup -&I g i& assumed 
to exist among components of either 5 or 5. 
Matrix 2 is assumed to be of the form 

‘El 0 
CO= 
- 0 g-v 

(4.1-8) 

where 

~1=pbir(cJ-12 (4.1-9) 

p2=pkr(~)]-12 (4.1-10) 

and both s’ and g’ are diagonal. 

4.1.3 Nonlinear Regression Solution 

Nonlinear-regression solution for the model 
given in section 4.1.2 is accomplished by using 
the algorithm at the end of section 3.3.1. Nodal 
sensitivities are calculated as illustrated in the 
appendix, section 4.3.2. We assume that obser- 
vation points may be located anywhere within 
the flow region, so that computed heads, &(,$&) 
and sensitivities, zi, at observation points in 
general must be obtained by interpolation from 
surrounding nodal values. Standard bilinear 
interpolation using the four adjacent nodes sur- 
rounding an observation is used as the inter- 
polation method (Wang and Anderson, 1982, 
p. 153-155). 

The normal equations used are equation 
3.3-20, as modified to include prior information 
also (see equation 3.4-13): 

+4!%+1 =tg*~‘c~-f&JQ) 

+tg*~‘s2(J&$&,q (4.1-11) 

where subscripts s and p refer to sample and 
prior information, respectively; 

s=the matrix [In ,OJ from equation 
4.1-6, transformed using equation 
3.3-16; 

,$&&)=a vector composed of the rth esti- 
mate of those parameters on which 
there is prior information; and 

s2 = the ordinary least-squares estimate 
of C? (to be developed later). 

4.2 Singularity and 
Conditioning 

Singularity of the least-squares coefficient 
matrix can occur whenever (1) no measured flow 
rates (such as well or spring discharges) are in 
the model and (2) an attempt is made to com- 
pute aII parameters. To understand how this oc- 
curs, consider first the case where there are no 
specified head parameters and no prior informa- 
tion, but ah other parameters are to be com- 
puted. Also, assume for simplicity that ah 
observation points correspond to node points. 
In this case it can be shown (appendix, section 
4.3.3) that 

Jb=Q (4.2-l) 

where subscripts T were omitted to simplify no- 
menclature, and~={~j}={ap/abj-(a~/abj)h}. 
By using equation 3.3-23, 

(4.2-2) 

so that 

Jb= “c Job-D i ah b 
_ j=1” J ‘--j=la i ’ 

(4.2-3) 
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Because 0, is nonsingular, c.=O for those columns resulting from specified 
head parameters and Cj=bj for the remaining 

l 
columns, then equation 4.2-5 holds for the 
entire sensitivity matrix, which indicates that 
the problem is again singular. Because addition 
of specified head parameters has no influence 
on this type of singularity, it is assumed for sim- 
plicity for the remainder of this section that 
there are no specified head parameters. 

Singularity caused by attempting to find all 
parameters in the absence of known flow rates 
can be rectified by using prior information. For 
the case of prior information, equation 4.2-5 can 
be written 

o,-@ ‘c i&j.=0 -j=labj J - 

or, by eliminating those nodes not correspond- 
ing to observation points from ah/a bjt 

jilX,a,=C * (4.2-4) 

Equation 4.2-4 can also be written in the form 

where 

X&=0 (4.2-5) 

c=&=[b,,b, ,..., bplT . (4.2-6) 

Recall that equation 4.2-5 implies that the least- 
squares coefficient matrix is singular. 

If a known flow rate Qi is at node i, then 
equation 4.2-l becomes 

Jb=Q (4.2-7) 

where 

4=[O,O,...,Q,...~O]T,, (4.2-8) 

so that, all other things being equal, 

x c#O as- -- (4.2-9) 

In the case where at least one parameter j is 
fixed, then Jb has column j of z and element j 
of b deleted. Thus, equation 4.2-l no longer 
holds, so that equation 4.2-9 will hold, if no 
other source of singularity exists. 

Whenever there are specified head param- 
eters, < and X, both contain columns resulting 
from these parameters, andJb#O. However, for 
those columks not involvingTh;specified head 
parameters, C Jjbj=o, where j denotes all pa- 
rameters ex&% specified head parameters. If 

zs 
c=o . (4.2-10) 

$J - 

The only way for equation 4.2-10 to hold is if 
X,g=Q and X+,c=O. If the only cause of the 
singularity is given by equation 4.2-1, then c=b 
is the only linearly independent solution of equa- 
tion 4.2-10, and, if & is derived from equation 
4.1-6, X,,, . .=O (i=1,2, . . ..p) is the only way that a 
equation 4.2-10 can hold. Hence,prior informa- 
tion on any parameter can theoretically condi- 
tion the problem so that all parameters can be 
found. 

The maximum number of parameters that can 
be found for any problem can also be obtained 
through nondimensionalization (or partial non- 
dimensionalization) to find the smallest number 
of independent groups. In addition, nondimen- 
sionalization also illustrates the idea that solu- 
tion is actually often best expressed in terms 
of ratios of the parameters. As an example, con- 
sider the case where a region is composed of two 
zones where Tl,T2,W1, and Wz are parameters. 
Then the flow equations for each zone are 

(4.2-11) 

and the boundary conditions between zones are 
4 
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1 , 1 I 

(4.2-12) 
m, =ud, 

where the notation ( *)1 indicates that the quan- 
tity in parentheses is evaluated just within the 
1 side of the boundary and similarly for ( .)2. If 
equations 4.2-11 and 4.2-12 are written in the 
alternative forms 

a2h a2h 
-+- 
ax2 ay2 

(Ml =W2 , 

W2 +-=o 
T2 

(4.2-13) 

ah 
- 

I an 2 

\ 

(4.2-14) 

/ 

instead of four independent parameters, there 
are only three written as ratios: WI/T,, W21T2, 
T,/T,. A known flow rate in zone 1, Q1, would 
add the term Q,/T, to the first part of equation 
4.1-13. In this case WlIT2, W2/T2, Tl/T2, and 
Q1/T2 could all be considered parameters. 
Knowing Ql (either exactly or with uncertain- 
ty) would provide unique estimates of the four 
original parameters. Another approach would 
be to find T,, T2, W,, W2 as parameters, know- 
ing that the problem is not singular because 
there are four independent ratios for the 
problem. 

Another common way for singularity to oc- 
cur is if a column of X, is zero: sj=O. This 
results if measurements are taken at points 
where there is no sensitivity to the parameter, 
bj. corresponding to the column. If this is the 
only source of singularity, then C=[O,O,...,bjl 
O,...,OIT is the only linearly independent solution 
of equation 4.2-5. In this case if X is derived 
from equation 4.1-6 and there is p%r informa- 
tion on bj’ then X+.,c#& so that the prior infor- 
mation solves the singularity problem. Addition 

of prior information on any other parameter 
alone obviously will not help. 

TWO sources Of singularity result if X,j=O 
and Jb=& In this case one solution of equation 
4.2-cs, as before, given by equation 4.2-6. 
However, because X,j=4 cj GUI be any ar- 
bitrary value less than infinity and so can be 
set to zero. Hence, c=[b,,b, )..., O,bj+l)...( b ITI 
where the zero appears in rowj of c, is anot i er 
solution to equation 4.2-5. Addition of prior in- 
formation on parameter j alone does not solve 
the singularity problem because, even though 
Xpjj does not equal zero, cj and Xpip i#j, do 
equal zero so that X c=g. A third solution of 
equation 4.2-5 is c= 0,O ,..., bj,O ,..., 01’. In this in- -r 
stance addition of prior information on any or 
all parameters except parameter j yields 
X,c=O. Thus, if X,j=O and Jb+ then the 
problem is singular unless prioFmformation is 
added on parameter j and at least one other 
parameter. 

If the columns of X, are almost linearly 
dependent, then the problem is ill-conditioned. 
Thus, if either Qi in equation 4.2-8 is almost 
zero or X _ij~~, then an ill-conditioned problem 
can result. However, ill-conditioning can occur 
in a number of ways. The techniques given in 
section 3.2.3 can be used to detect conditioning 
problems. 

Problem 4.2- 1 

Solve problem 3.2-l with the regression com- 
puter program (appendix 4.3.4). Assume that 
the stream tube is one foot wide and that trans- 
missivities are unity. Place a row of nodes along 
each side of the stream tube, but specify ob- 
served heads only along one row or down the 
center of the tube (number of observed heads 
should be the same as in problem 3.2-l). Allow 
two iterations. What would happen if you were 
to attempt to estimate both W and T? 

Problem 4.2-2 

Figure 1 gives the zone map for a steady-state 
ground-water flow system in a hypothetical 
region. The finite difference mesh and types of 
boundary conditions also are shown on the map. 
Use the regression program (appendix 4.3.4) to 
construct a regression flow model for the region. 
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DISTANCE, THOUSANDS OF FEET 
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Prior information exists on the following 
parameters: 

standard 
T2=420 ft21d deviation = 84 
W, =0.0004 ftld 0.00012 
W3=0.00017 ftld 0.000051 
R,=O.OS d-l 0.008 
Q,=-97,000 ft3/d 1940 
92 =-51,000 ft31d 1020 
h, at (15,16)=10.4 ft 1.04 
hi at (15,7)=4.8 ft 0.48 
hB at (15,6)=4.8 ft One parameter 0.48 
h, at (15,5)=5.4 ft 0.54 

Assume that hB varies linearly between the 
estimated values. For one reason or another, the 
estimates of hB at the four nodes are not obser- 
vations. (They may have been interpolated from 
a contour map, for example.) 

There is no prior information on the remain- 
ing parameters, but probable limits of variation 
for these parameters are 

3O<T,<SO 
10<T3<40 

-0.0003<w,<-0.0000~ 
0.2<qB,<0.8 

0.15<q,,<o.4 

From these ranges, initial estimates of the 
parameters may be determined. 

The observed head data in table 1 were col- 
lected. They are of uniform reliability. 

Table 1. 

(8,2) 
(142) 
(12.3) 
(10.4) 

(7.5) 
(11,5) 
(13.5) 
(1595) 

(10.7) 
(8,s) 
U-&8) 
(1598) 

(7.91 
(4,lO) 
WO) 
(11,lO) 

60.70 (7,111 6.68 
75.64 (13W -15.32 
60.27 (3,121 16.88 
29.67 (5.12) 15.87 

4.22 (9,121 4.48 
4.37 (11,12) -18.34 
6.07 (13,13) -2.47 
5.81 (15.13) 8.10 

4.57 
5.21 

-44.89 
7.01 

6.95 (7,151 8.30 
12.21 (14,15) 4.54 
4.04 C&16) 85.82 

-89.36 Ul,W 2.26 

13,141 54.12 
(5914) 38.27 
mu4) 0.053 
W&14 -2.92 

The .river stage is about 4.5 ft everywhere. 
Assuming that r~‘=l, find all possible 

parameters for the model. First, however, de- 
termine how many parameters you can find! 

Examine the sensitivity maps. Are there data 
in relatively high sensitivity areas for all param- 
eters? Do you think that there are places where 
new data points would improve the results? 

4.3 Appendices 

4.3.1 Integrated Finite Difference 
Model 

The numerical solution of equation 4.1-1 is 
obtained by using integrated finite difference 
methods. A rectangular grid of nodes is as- 
sumed as indicated in figure 4.3-l. Each node 
point is enclosed by a subdomain, which is a rec- 
tangular region bounded by sides located half 
way between adjacent node points. 

The coordinates of a typical node (U) are 
given as (xiyj). With the nomenclature shown 
in figure 4.3-1, equation 4.1-1 can be integrated 
over a subdomain enclosing node (ij) to produce 

+j,, (T ah). I YY ay I+‘/ 

Nii 

+h.,JAy Wd++CQp=O a i p=l 
(4.3-1) 

where 

AXi=%(AXi+l/p+AXi-1/9) 
(4.3-2) 

AYj=1/2(AYj+w+AYj-~) 

and Nti is the number of pumping wells in sub- 
domain ~iAyj. 

If TEE, R, and W are assumed to be constant 
in each cell (A,& C,D ) adjacent to node (ij), then 
a valid numerical approximation of equation 
4.3-l is 
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p,j+ 1) 
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i A B 

3 
,.Ci,j-1) 
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Figure 4.3-l 

T 
h. -hij Z+lJ 

zzi+%sj’Yj &i+Yz 

-Txxisl/ jAyj hzhi-li 
i-W 

h 
+Tyyti+&q ij+1-hij 

AYj+% 

-TYYk.i- 4% 
hij-h~j_, 

Ayj- ‘/9 

+R~~iAy~H~--hi) 

+W~~iAyj+Qij=O 

where 

(4.3-3) 

T zzi+lh j= 
Ayj-%TxzB+A~j+%Txd’ (4.3-4) 

2L\yi 

T xxi-% j= 
AYj-?hTxxA+A~j+%TxaD (4 3-5) . 

2AYj 

T yyiJ+ ‘/a = 
&-sTyyD+&. Z+‘/‘YYc (4.3-G) 

2~i 

T yyij-1% = 
bi-‘/2TyyA+b. z+gTruB (4.3-7) 

2~i 

Nti 

Qtiy$$ - (4.3-10) 

Because of the way that the cells are desig- 
nated, ah zone boundaries are assumed to pass 
through node points; for example, see figure 
4.3-2. 

If the node points in equation 4.3-3 are desig- 
nated as 

k=i+NC&l) (4.3-11) 

where NC is the number of columns (in the i 
direction), then the grid is renumbered as in 
figure 4.3-3. Equation 4.3-3 then becomes 

h 
+Tyy,+dL\xi k+NC-hk -Tyyhz~i 

hk-hk-NC 

‘Yj+?h AYj-‘/ 

+Rk&AYJHk-hk )+ WkhxiAyj+Qk=O (4.3-12) 

where 

T xxk, 1 =Txxi-ti/nj pTyyk,2=TyyG-l/* 

T =L3 =Txxi+,j 9 and 

T yyk?4=TyyiJ+% * 

In matrix form the numerical solution is 

Dh=q (4.3-13) 

0 

a 



REGRESSION MODELING OF GROUND-WATER FLOW 83 

. 
i l l 

. . 

I 
I 
I . .----. 

I l 

. . 

1 . . i l 

.----. 
I 

. . ! . . . 

Figure 4.3-2 

27 28 29 30 
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Figure 4.3-3 

where, from equation 4.3-12 for node k not on 
a specified head boundary, 

Axj 
-- 9 Dk,k-NC=-Ty,k.2 Ay . , 

J-1 P 
(4.3-14) 

AYj 
Dk,k-l=-Txrk,l G ’ 

(4.3-15) 

+Rk&AYj 9 (4.3-16) 

AYj 
Dk,k+l=-Td,3 c ’ 

i+% 
(4.3-17) 

Dk,k+NC=-T 
hi 
- ’ YYkp4 AYj+s 

(4.3-M) 

qk’Rk~iAYjH,+ Wk~iAYj+Qk . (4.3-19) 

For node k on a specified head boundary, 
D~k-Nc=D~k-,=D~k+l=D~k+Nc=o,D~,k=lr 
and qk=hBk, the specified head. AII remaining 
Dkp=O for equation k in both cases. To 
preserve symmetry of g, equations P, &‘#k, are 
modified as indicated just after equation 4.1-4. 

The flow across specified flow boundaries is 
incorporated by using the Qk term, so that the 
total flow crossing the specified flow boundary 
of the subdomain around node k is added into 
Qk. If Qk=O on a boundary node and the head 
at the node is not specified, then the boundary 
for the node is automatically a no-flow type. 
When computing the total flow to add into a 
specified flow node, remember that nodes are 
on boundaries so that subdomains for boundary 
nodes are only fractions of the fuII subdomains. 
For example, see figure 4.3-4. 

4.3.2 Computation of Nodal 
Sensitivities for the Integrated 
Finite Difference Model 

Partial derivatives 4, defined by 

ap aD 
Je= z- = & e=1, 2,...,p 

e abe 
(4.3-20) 

Dashed lines 
enclose 
subdomains 

Figure 4.3-4 
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are employed in equation 3.3-24 to compute 
sensitivities for the nonlinear regression solu- 
tion of the numerical model given in section 
4.3.1. Using the definitions of the elements of 
D and p given in section 4.3.1, partial deriva- 
%es for the various parameters are computed 
as follows: 

1. bp Tzd at node k 

aDk,k-NC 
=o (4.3-21) 

a be 

aDk,k-l AYj a 

ab, =-- Ax i-% aTzxA 

AYj-%TzxA +AYj+%TzxD 
I 

AYj-l/l 

2AYj 
=- =(4.3-22) 

i-l% 

_ Ayj-% aDk,k -- 
a be 2&i--1/ 

(4.3-23) 

aDk,k+l 
=o (4.3-24) 

abe 

aDk,k+NC =. 

ab, . 
(4.3-25) 

Similar expressions result for b~TzzB,Tz,~ 
and Tzti. If more than one of the cells A, . . ..D 
lie in the same zone, then derivatives for the in- 
dividual expressions are summed to form the 
final value. For example, if bp=TyyA=TyyB 
= Trrc= TyuD, then 

aDk,k-NC = aDk,k-NC + aDk,k-NC 

abe a TYYA a TYYB 

+ 
aDk,k-NC 

+ 
aDk,k-NC 

a TYYc a TYYD 

4 4-W 4+X =-- 
I 
-+ +o+o 

AYj-‘/1 2AXi 2AXi I 

4 =-- (4.3-26) 
AYj-l/ . 

Derivatives for any configuration of zone 
boundary are handled by combinations of the 
form of equations 4.3-21 through 4.3-26. 

An example of application of equations 4.3-21 
through 4.3-26 for an irregular zone boundary 
is given in figure 4.3-5. Let T,,=T =T for 
simplicity. Then, for a two-zone pro z;T em, the 
two transmissivities are Tl and T2. 

For node 7: 

aD7,2 k2 aD7,6 AY2 

aT1 
=--,-=m-, ao7,7 

AYl% a? 4% aT1 

AY2 k2 AY2 b2 
=- 

b2vn 
+- 

AY2% 
+- -9 

4% 
+ 

AYl% 

aD7,8 AY2 

-w=--’ 

&2 aD7,12 

b21/n aT1 =--* @21/n 

For node 7 the derivatives of the Di .‘s with 
respect to T2 are alI zero because T2 d oes not 
appear in any of the Dij’S. For node 8: 

aD8,3 &3 - =- - , aD&7 =_%,, aD8 8 

aT1 AYl% a? b2% aT1 

AYl% +&2?h AY2 h3 =- 
2&3% 

-+- -9 
2AY2% Ax,% 

+ 
AYl% 

a D8,9 

aT1 

aD&9 _ AY2?h , aD8,13 &3% -- =-- 

aT2 2&3% aT2 2AY2% 

16 17 18 19 20 

2 

1 

/ 
/’ 
.’ 

T2 
11 12 ,/13 14 15 

/ 

Tl 
I' 

/ 
6 7 ,r 8 9 10 

,// MM,- ,, ,. 
/' 
/' 
I' 

,-zone 

/ boundary 

k=l 2 3 1'4 5 

m 1 2 3 4 5 

Figure 4.3-S 
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bp=RA at node k 

aDk,k-NC = aDk,k-l = aD,k+l 

a be a be abe 

(4.3-27) 

(4.3-28) 

aqk 
- =1AAx 
a be 

i-l/AYj-1. ?Hk * 

Derivatives for R,, Rc, and R. are similar. 

3. bp=WA at node k 

(4.3-30) 

B AU derivatives of Dii are zero. 

4. bFqBlr boundary fhrx 1 in Qk, where, for 
example, Qk=QB2.1/2Ay~-‘/a+QB1.~AYj+’ 
(see figure 4.3-6). 

(4.3-31) 

A similar expression results for bQ=qB2, and if 
qB1=qB2, the derivative is the sum of two 
parts, of equation 4.3-31 and its analog for qB2. 

5. bFH, or Ht 

The specified head at any node k along a speci- 
fied head boundary is given as 

hBk=AktLkH,+(l-Lk)H,l (4.3-32) 

where 

A,= 
hiik (4.3-33) 

L,~+(l-L,)@ 

Dashed line 
encloses the 
subdomain for 
node k 

Fl k-NC 

Figure 4.34 

md the meanings of the symbols are defined 
after equation 4.1-5. 

If node m (here only m indicates an arbitrary 
lode number) is adjacent to a boundary seg- 
nent bounded by nodes s and t, and node k lies 
n the segment so that it appears in equation 
rt, then for bpH,, 

a%n ahBk 
-=-D,k aH 
abe 

- =-D,&ki,(l-L,) . (4.3-34) 
s 

Similarly, for bFH, , 

a%n ahBk 
-=-Dngk aH, 
a be 

- =-D,,,@&k . (4.3-35) 

If node k lies on the boundary, then the equa- 
tion for node K in equation 4.3-13 becomes 

hk=hBk 

=Ak[LkH,+(l-Lk)Hs] 

and, for bp=HS , 

(4.3-36) 

aqk 
- =/i&l-L,) 

abe 
(4.3-37) 

and similarly for bp=H, . 

43.3 Derivation of Equation 4.2-l 

By careful examination of equations 4.3-12 
through 4.3-19 it can be seen that, if there are 
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no specified head parameters, q-Dd=Q can be 
written in the form 

a,bl+ai,bz+...+aipbp-Qi=O, 

i=l, 2,...,m 
where 

(4.3-38) 

a@=coefficient containing AZ, Ay, and head 
differences; 

+=any parameter except a specified head 
parameter; and 

Qi=term not containing parameters in b. 

Define 

J 
ag ag .=--- 

-J abj abj ” 
(4.3-39) 

Then, by carrying out the differentiations in- 
dicated in equation 4.3-39 and comparing the 
result with equation 4.3-38 it can be seen that 

so that 

JGbj=aGbj (4.3-40) 

(4.3-41) 

If b contains all possible parameters (except 
specified head parameters) and there are no 
~OWII fluxes, then Qi=O and 

j~~J~ bj=O (4.3-42) 

or 

Jb=g . (4.3-43) 

4.3.4 Documentation of Program for 
Nonlinear Regression Solution of 
Steady-State Ground-Water Flow 
Problems 

Introduction.-This program is designed to 
obtain a nonlinear regression solution to the 

finite-difference model of steady-state ground- 
water flow given in section 4.3.1. Basic calcula- 
tion methods are given in sections 4.1 and 4.3.2. 

The program was developed using the 
Microsoft’ Fortran Compiler, Version 3.3, with 
the DOS’ 2.0 operating system on an IBM’ 
PC/XT computer with the IBM’ 8088 Math 
Coprocessor and 256 KB memory. Except for 
the OPEN statements near the beginning of the 
code, Fortran 66 was used throughout to make 
the code as machine independent as possible. 
The source code is contained in files 
INVFD.FOR and INVSUB.FOR in the 5% in. 
diskette accompanying this report. These two 
files must be linked or compiled together. 

The computer program is composed of a main 
program and eight subroutines. The main pro- 
gram controls input-output and performs all 
computations that cannot be accomplished 
more effectively with subroutines. The eight 
subroutines (D4SOLV, COEF, LSTSQ, 
PRTOT, ORDER, ARRAY, ARRAYI, HOBS) 
perform the following specialized tasks: 
D4SOLV 

COEF 

LSTSQ 

PRTOT 

ORDER 

ARRAY 

ARRAY1 

Obtains an LDU factorization solu- 
tion of the set of linear algebraic 
equations resulting from application 
of the finite difference methods, 
assuming the equations are ordered 
in an alternating diagonal fashion 
(Price and Coats, 1974). 
Computes coefficients necessary for 
the determination of sensitivities 
and heads. 
Computes the coefficients of the 
normal equations and solves the 
system of equations to determine 
the vectors of parameter changes 
and parameters. 
Prints matrices or vectors in a col- 
umn configuration. 
Computes equation numbers at grid 
points corresponding to the alter- 
nating diagonal ordering scheme. 
Reads and (or) prints l- and 
2dimensional real array variables. 
Reads and (or) prints l- and 2- 
dimensional integer array variables. 

‘Use of the trade names in this report is for identification 
purposes only and does not constitute endorsement by the 
U.S. Geological Survey. 
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